
Replication Data for: Data-Parallel
PU-RBF Interpolation

David Schneideri

2025

Cite as

Schneider, David. Replication Data for: Data-Parallel PU-RBF Interpolation Journal of
Data- and Knowledge-integrated Simulation Science Nr. 1/2026: S.1-7. DOI:

10.46298/jodakiss.16884.

This document is licensed under the terms of the
Creative Commons Attribution 4.0 International License (CC BY 4.0).

iInstitute for Parallel and Distributed Systems, University of Stuttgart

http://doi.org/
https://creativecommons.org/licenses/by/4.0/


2 JoDaKISS | Journal of Data- and Knowledge-integrated Simulation Science

Abstract
The dataset (Schneider, 2025) contains software, experimental setups, and performance
measurements to replicate and complement the results presented in Section 5.3 of Schnei-
der (2026). This section deals with a performance-portable implementation of the
partition-of-unity radial-basis-function (PU-RBF) interpolation in the open-source li-
brary preCICE (Schneider and Uekermann, 2025). At its core, the algorithmic structure
of the PU-RBF interpolation requires solving many small matrices, which makes it a
promising candidate for parallel processing on accelerator cards using batched solvers.
However, conventional solver routines typically assume that all matrices have the same
size and structure, which is not the case for the PU-RBF interpolation in preCICE. The
presented implementation concept is based on the team-parallel execution model of-
fered by Kokkos and Kokkos Kernels (Rajamanickam et al., 2021; C. Trott et al., 2021;
C. R. Trott et al., 2022), where available hardware threads are grouped into thread
teams and deployed in parallel onto the executor. The implementation investigates
team-parallel kernels for various stages and user parameters of the PU-RBF interpola-
tion. Since preCICE supports parallel computing on distributed-memory systems, the
resulting implementation can leverage both distributed- and shared-memory parallelism.
The experiments investigate performance on various platforms, including CUDA, HIP,
SYCL, and OpenMP, as well as on multiple levels, including kernel-level, algorithmic-
level, node-level, and cluster-level performance.

1 Background
preCICE (Chourdakis et al., 2022) is an open-source coupling library written in C++. It
is designed for the partitioned coupling of existing solvers for the simulation of coupled
problems and is widely used in the simulation science community (Uekermann, 2020).
Its functionality spectrum can broadly be grouped into four categories: algorithms for
equation coupling, data communication, time interpolation, and data mapping. The PU-
RBF interpolation presented in the dataset (Schneider, 2025) falls into the last category,
that is, it is one of the data mapping algorithms available to preCICE users. Data map-
ping solves a scattered-data interpolation problem resulting from non-matching coupling
interfaces defined by the solvers participating in the simulation. The PU-RBF interpo-
lation has been proven to be a powerful method for tackling data mapping problems
by Schneider and Uekermann (2025). However, the underlying implementation was
restricted to central processing units (CPUs) and to a distributed-memory paralleliza-
tion via MPI, although modern compute clusters typically offer heterogeneous hard-
ware such as graphics processing units (cf. the top ten supercomputers in June 20251).
A performance-portable implementation of the PU-RBF interpolation in preCICE was
developed as part of Section 5.3 of Schneider (2026). The dataset complements the
discussed results and ensures reproducibility.

1https://top500.org/lists/top500/2025/06/

cb

https://top500.org/lists/top500/2025/06/
https://creativecommons.org/licenses/by/4.0/deed.de


3 JoDaKISS | Journal of Data- and Knowledge-integrated Simulation Science

2 Specification

Table 1: Specification of the dataset
Subject Computational science
Specific subject area Performance-portable data mapping algorithms for parti-

tioned multiphysics coupling, PU-RBF interpolation, and
high-performance computing.

Type of data Software, performance measurements in .csv files and de-
picted in PDF plots, experimental setup files.

Data collection Runtime measurements were collected using the built-in
performance-profiling functionality of preCICE.

Related research article Schneider, 2026, Section 5.3
Software repository https://github.com/precice/precice
Programming language C++

Website https://precice.org/

3 Value
The primary focus of this data publication is to ensure the reproducibility of the results
presented in Section 5.3 of Schneider (2026). Due to the complexity of the investigated
parameter space, the dataset also effectively contains additional results and performance
measurements not explicitly shown in the affiliated document. In the broader context of
preCICE, the developed method gives users additional flexibility to load-balance their
simulation setups and leverage the available hardware. It provides users with a unique
reference for configuring their simulations and makes the design decisions as well as the
configuration options of the algorithm transparent and understandable. Given the ac-
cessibility of the code through the dataset and preCICE, the implementation might also
serve as a blueprint for other communities where efficient interpolation implementations
are required.

4 Data Description
A detailed description of the dataset is provided in the top-level dataset README.md.

cb

https://github.com/precice/precice
https://precice.org/
https://creativecommons.org/licenses/by/4.0/deed.de


4 JoDaKISS | Journal of Data- and Knowledge-integrated Simulation Science

5 Simulation Design, Models, Methods
As mentioned before, detailed information about the mathematical model and the prac-
tical implementation is contained in Section 5.3 of Schneider (2026). The dataset in-
cludes additional explanations of the individual experiments. The following provides a
high-level overview of the experimental setups and investigated parameters.

In preCICE, major parts of the PU-RBF algorithm are implemented in the following
three files:

• src/mapping/device/KokkosTypes.hpp, which includes alias definitions for code
readability,

• src/mapping/device/KokkosPUMKernels_Impl.hpp, which contains the device
kernel implementations, and

• src/mapping/BatchedRBFSolver.hpp, which orchestrates the overall solver al-
gorithm.

The performance data are typically grouped according to algorithm sections executed
only once, the initialization performance of the algorithm, and sections executed re-
peatedly, the evaluation performance of the algorithm. Furthermore, the PU-RBF in-
terpolation is implemented in two distinct variants: in the minimal-compute variant,
the implementation precomputes all data structures during the initialization phase and
reuses them during the evaluation phase. In the minimal-memory variant, the implemen-
tation recomputes data structures during the evaluation phase to minimize the overall
memory footprint of the algorithm. Additional parameters of the PU-RBF interpola-
tion, which were inherited from the CPU implementation, include the partition sizes
(called vertices-per-cluster in the configuration), and the projection, which affects the
partition layout. The partition size determines the average size of the local matrices
each thread team operates on, and the projection configuration is a parameter affecting
how densely populated individual partitions are on average. Overall, the experimental
setup covers CUDA, HIP, SYCL, and OpenMP as executor backends on the compute
platforms documented in the top-level README.md, although not all backends were used
in every experiment.

The experimental setup follows a bottom-up design. On the first level, the efficiency of
individual team-parallel kernels is evaluated for different user configurations. The overall
goal is to find appropriate and robust default settings for the team size each kernel
operates on. Larger teams can solve the local matrices faster, but at the same time,
fewer teams can operate concurrently on the device. On the second level, a performance
breakdown of the entire algorithm is performed using the concluded team sizes of the
first level. Notably, this performance breakdown includes algorithm sections executed on
the host, memory transfers, and compares the execution time of various kernels. On the
third level, the data-parallel execution on a device is combined with distributed-memory
parallelization via MPI to determine a suitable MPI granularity. Using multiple MPI
ranks per device scales down the problem size each device needs to solve. At the same

cb

https://creativecommons.org/licenses/by/4.0/deed.de


5 JoDaKISS | Journal of Data- and Knowledge-integrated Simulation Science

time, the contention incurred through sharing the device with another thread might
lower the overall efficiency. On the fourth level, the data-parallel PU-RBF interpolation
is compared against its CPU variant in a strong-scaling experiment on SuperMUC-NG
Phase 2.

6 Limitations
The current implementation was tested and analyzed on CUDA, HIP, SYCL, and OpenMP
as parallel executors. However, Kokkos supports additional backends, such as HPX,
whose application has not been tested and may not yet be functional.

Moreover, preCICE is a library that is called by the application code. If the application
code also relies on Kokkos as a performance-portable programming model, then the de-
vice executor configured in the application cannot be separated from the device executor
configured in preCICE, because Kokkos may be initialized only once.

7 Technical Validation
To verify the correctness of the implementation, individual backends are tested as part
of the continuous integration of preCICE. If preCICE is compiled for a specific back-
end, including the tests, the tests can be executed using the ctest command. All tests
should pass. Similarly, the underlying testing environment for the numerical experi-
ments includes a dedicated continuous-integration infrastructure (Schneider et al., 2024).
The performance breakdown of the algorithm (directory performance-breakdown in
the dataset) also contains measurements of the discrete ℓ2-error computed numerically
against an analytical test function.

For the validity of the performance measurements, experiments were repeated five times,
and the reported runtime corresponds to the average of three runs, where the maximum
and minimum runtimes were excluded. The kernel measurements (directory team-size
in the dataset) were repeated ten times due to the small timescale, where the averaging
was performed over eight runs, again, excluding the minimum and maximum runtime.
The largest run of the strong-scaling experiment was performed only once due to resource
limitations. Running and reproducing the experiments is fully automated through the
included scripts, as explained in the README.md.

8 Usage Notes
While the raw measurements are included in the dataset, all measurements are also
available as PDF plots. These plots can readily be inspected. Further helper scripts
for a quantitative assessment of individual experiments are included in the dataset and

cb

https://creativecommons.org/licenses/by/4.0/deed.de


6 JoDaKISS | Journal of Data- and Knowledge-integrated Simulation Science

described in the README.md files within the experiment subdirectories. For all Python
scripts, a requirements.txt file is provided in the dataset.

Acknowledgment
This work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) under project 515015468, and I thank the DFG for supporting this work
by funding – EXC2075 – 390740016 under Germany’s Excellence Strategy. I acknowl-
edge the support by the Stuttgart Center for Simulation Science (SimTech). Further-
more, I gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-
centre.eu) for funding this project by providing computing time on the GCS Supercom-
puter SuperMUC-NG at Leibniz Supercomputing Centre (www.lrz.de).

Competing Interests
The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

References
Chourdakis, G., Davis, K., Rodenberg, B., Schulte, M., Simonis, F., Uekermann, B.,

Abrams, G., Bungartz, H., Cheung Yau, L., Desai, I., Eder, K., Hertrich, R.,
Lindner, F., Rusch, A., Sashko, D., Schneider, D., Totounferoush, A., Volland,
D., Vollmer, P., & Koseomur, O. (2022). PreCICE v2: A sustainable and user-
friendly coupling library [version 2; peer review: 2 approved]. Open Research
Europe, 2 (51). https://doi.org/10.12688/openreseurope.14445.2

Rajamanickam, S., Acer, S., Berger-Vergiat, L., Dang, V., Ellingwood, N., Harvey, E.,
Kelley, B., Trott, C. R., Wilke, J., & Yamazaki, I. (2021). Kokkos kernels: Per-
formance portable sparse/dense linear algebra and graph kernels. https://arxiv.
org/abs/2103.11991

Schneider, D. (2025). Replication Data for: Data-Parallel PU-RBF Interpolation. https:
//doi.org/10.18419/darus-5392

Schneider, D. (2026). Flexible and efficient data mapping for simulation of coupled prob-
lems [Doctoral dissertation, University of Stuttgart].

Schneider, D., & Uekermann, B. (2025). Efficient partition-of-unity radial-basis-function
interpolation for coupled problems. SIAM Journal on Scientific Computing, 47 (2),
B558–B582. https://doi.org/10.1137/24M1663843

Schneider, D., Yurt, M. K., Simonis, F., & Uekermann, B. (2024). ASTE: An artificial
solver testing environment for partitioned coupling with preCICE. Journal of
Open Source Software, 9 (103), 7127. https://doi.org/10.21105/joss.07127

cb

https://doi.org/10.12688/openreseurope.14445.2
https://arxiv.org/abs/2103.11991
https://arxiv.org/abs/2103.11991
https://doi.org/10.18419/darus-5392
https://doi.org/10.18419/darus-5392
https://doi.org/10.1137/24M1663843
https://doi.org/10.21105/joss.07127
https://creativecommons.org/licenses/by/4.0/deed.de


7 JoDaKISS | Journal of Data- and Knowledge-integrated Simulation Science

Trott, C., Berger-Vergiat, L., Poliakoff, D., Rajamanickam, S., Lebrun-Grandie, D., Mad-
sen, J., Al Awar, N., Gligoric, M., Shipman, G., & Womeldorff, G. (2021). The
kokkos ecosystem: Comprehensive performance portability for high performance
computing. Computing in Science Engineering, 23 (5), 10–18. https://doi.org/
10.1109/MCSE.2021.3098509

Trott, C. R., Lebrun-Grandié, D., Arndt, D., Ciesko, J., Dang, V., Ellingwood, N.,
Gayatri, R., Harvey, E., Hollman, D. S., Ibanez, D., Liber, N., Madsen, J., Miles,
J., Poliakoff, D., Powell, A., Rajamanickam, S., Simberg, M., Sunderland, D.,
Turcksin, B., & Wilke, J. (2022). Kokkos 3: Programming model extensions for
the exascale era. IEEE Transactions on Parallel and Distributed Systems, 33 (4),
805–817. https://doi.org/10.1109/TPDS.2021.3097283

Uekermann, B. (2020). How did precice get popular? https://doi.org/10.5281/zenodo.
12795485

cb

https://doi.org/10.1109/MCSE.2021.3098509
https://doi.org/10.1109/MCSE.2021.3098509
https://doi.org/10.1109/TPDS.2021.3097283
https://doi.org/10.5281/zenodo.12795485
https://doi.org/10.5281/zenodo.12795485
https://creativecommons.org/licenses/by/4.0/deed.de

	Background
	Specification
	Value
	Data Description
	Simulation Design, Models, Methods
	Limitations
	Technical Validation
	Usage Notes

